

Self-training with Noisy Student improves ImageNet classification

Authors:

Qizhe Xie, Minh-Thang Luong, Eduard Hovy, Quoc V. Le

Presenting student:

Sergio Izquierdo Barranco

Outline

- Introduction
- Related works
- Noisy Student Training
- Experiments
- Conclusion

1. Introduction

- Image classification
- Requires large amount of labeled data
 - Expensive to acquire
- How to take advantage of unlabeled data?

Krizhevsky et al. ImageNet Classification with Deep CNN

Overview of Noisy Student Training

- Student improves the teacher
- Outperforms state-of-the-art methods: from 86.4% to 88.4%

2. Related works

- Weakly labeled data
- Teacher-student approaches
 - Knowledge Distillation
 - Data Distillation

Weakly Labeled Data

- Previous state-of-the-art [Mahajan et al. 2018]
- 3.5 billion Instagram images
- Labeled using hashtags

Teacher-Student

Noise is not used or not understood

Knowledge Distillation

- Model compression
- Student is smaller

Data Distillation [Radosavovic et al. 2017]

- Ensemble teacher predictions
- Strengthens the teacher

Teacher

- Learns on labeled data and is trained until convergence
- Generates soft or hard labels for unlabeled data
- Noise-free on inference

Student

- Same or more capacity than the teacher
- Trains on both labeled and unlabeled data (with teacher labels)
- Once trained works as the teacher
- Noise (input and model noise)

Student Input Noise

- RandAugment
- Prediction consistency

RandAugment

[Cubuk et al. 2020]

Student Model Noise

- Dropout and Stochastic Depth
- Weakens the student

Dropout

Implementation Details

Data balancing

Before

16

Implementation Details

Data balancing

Before After

Implementation Details

Use of soft labels

Implementation Details

- Model architecture: EfficientNet [Mingxing Tan and Quoc V. Le 2019]
- Uniformly scales depth/width/resolution
- EfficientNet B0, B1, ..., B7 and L2

depth:
$$d=\alpha^{\phi}$$
 width: $w=\beta^{\phi}$ resolution: $r=\gamma^{\phi}$ s.t. $\alpha\cdot\beta^2\cdot\gamma^2\approx 2$ $\alpha\geq 1, \beta\geq 1, \gamma\geq 1$

[Mingxing Tan and Quoc V. Le 2019]

- Datasets
 - ImageNet2012 ILSVRC (public)
 - JFT dataset (not public)
 - YFCC100M (public)
- Metric: Accuracy
- Iterative process: B7 L2 L2 L2
- Just L2 takes 6 days of training on TPU

[ImageNet 2015]

Results

Method	# Params	Extra Data	Top-1 Acc.	Top-5 Acc.
ResNet-50	26M	-	76.0%	93.0%
ResNet-152	60M	-	77.8%	93.8%
DenseNet-264	34M	-	77.9%	93.9%
Inception-v3	24M	-	78.8%	94.4%
Xception	23M	-	79.0%	94.5%
Inception-v4	48M	-	80.0%	95.0%
Inception-resnet-v2	56M	-	80.1%	95.1%
ResNeXt-101	84M	-	80.9%	95.6%
PolyNet	92M	-	81.3%	95.8%
SENet	146M	-	82.7%	96.2%
NASNet-A	89M	-	82.7%	96.2%
AmoebaNet-A	87M	-	82.8%	96.1%
PNASNet	86M	86M -		96.2%
AmoebaNet-C	155M	155M -		96.5%
GPipe	557M	557M -		97.0%
EfficientNet-B7	66M	M -		97.2%
EfficientNet-L2	480M	-	85.5%	97.5%
ResNet-50 Billion-scale	26M		81.2%	96.0%
ResNeXt-101 Billion-scale	193M	2 FD : l-l-l-l-l-:4h +	84.8%	-
ResNeXt-101 WSL	829M	3.5B images labeled with tags	85.4%	97.6%
FixRes ResNeXt-101 WSL	829M		86.4%	98.0%
Big Transfer (BiT-L) [†]	928M	928M 300M weakly labeled images from JFT		98.5%
Noisy Student Training (EfficientNet-L2)	480M	300M unlabeled images from JFT	88.4%	98.7%

Results

Method	# Params	Extra Data	Top-1 Acc.	Top-5 Acc.
ResNet-50	26M		76.0%	93.0%
ResNet-152	60M		77.8%	93.8%
DenseNet-264	34M		77.9%	93.9%
Inception-v3	24M		78.8%	94.4%
Xception	23M		79.0%	94.5%
Inception-v4	48M		80.0%	95.0%
Inception-resnet-v2	56M		80.1%	95.1%
ResNeXt-101	84M		80.9%	95.6%
PolyNet	92M		81.3%	95.8%
SENet	146M	-	82.7%	96.2%
NASNet-A	89M		82.7%	96.2%
AmoebaNet-A	87M		82.8%	96.1%
PNASNet	86M		82.9%	96.2%
AmoebaNet-C	155M		83.5%	96.5%
GPipe	557M		84.3%	97.0%
EfficientNet-B7	66M	_	85.0%	97.2%
EfficientNet-L2	480M		85.5%	97.5%
ResNet-50 Billion-scale ResNeXt-101 Billion-scale ResNeXt-101 WSL	26M 193M 829M	3.5B images labeled with tags	81.2% 84.8% 85.4%	96.0% - 97.6%
FixRes ResNeXt-101 WSL	829M		86.4%	98.0%
Big Transfer (BiT-L) †	928M	300M weakly labeled images from JFT	87.5%	98.5%
Noisy Student Training (EfficientNet-L2)	480M	300M unlabeled images from JFT	88.4%	98.7%

Results

Method	# Params	Extra Data	Top-1 Acc.	Top-5 Acc.
ResNet-50	26M		76.0%	93.0%
ResNet-152	60M		77.8%	93.8%
DenseNet-264	34M		77.9%	93.9%
Inception-v3	24M		78.8%	94.4%
Xception	23M		79.0%	94.5%
Inception-v4	48M		80.0%	95.0%
Inception-resnet-v2	56M		80.1%	95.1%
ResNeXt-101	84M		80.9%	95.6%
PolyNet	92M		81.3%	95.8%
SENet	146M	-	82.7%	96.2%
NASNet-A	89M		82.7%	96.2%
AmoebaNet-A	87M		82.8%	96.1%
PNASNet	86M		82.9%	96.2%
AmoebaNet-C	155M		83.5%	96.5%
GPipe	557M		84.3%	97.0%
EfficientNet-B7	66M	-	85.0%	97.2%
EfficientNet-L2	480M	-	85.5%	97.5%
ResNet-50 Billion-scale	26M		81.2%	96.0%
ResNeXt-101 Billion-scale	193M	2 FD :	84.8%	
ResNeXt-101 WSL	829M	3.5B images labeled with tags	85.4%	97.6%
FixRes ResNeXt-101 WSL	829M		86.4%	98.0%
Big Transfer (BiT-L) †	928M	300M weakly labeled images from JFT	87.5%	98.5%
Noisy Student Training (EfficientNet-L2)	480M	300M unlabeled images from JFT	88.4%	98.7%

Model Size Study

- Noisy Student can improve other models
- Even without iterative training

Model Size Study

- Noisy Student can improve other models
- Even without iterative training

Method	Top-1 Acc.	Top-5 Acc.
ResNet-50	77.6%	93.8%
Noisy Student Training (ResNet-50)	78.9%	94.3%

Noisy Student on ResNet-50

Robustness

ImageNet-A (hard images)

Method	Top-1 Acc.	Top-5 Acc.
ResNet-101 [32]	4.7%	
ResNeXt-101 [32] (32x4d)	5.9%	
ResNet-152 [32]	6.1%	-
ResNeXt-101 [32] (64x4d)	7.3%	-
DPN-98 [32]	9.4%	
ResNeXt-101+SE [32] (32x4d)	14.2%	-
ResNeXt-101 WSL [55, 59]	61.0%	-
EfficientNet-L2	49.6%	78.6%
Noisy Student Training (L2)	83.7%	95.2%

submarine canoe

sea lion

hummingbird bald eagle basketball parking meter

Robustness

ImageNet-C (images with corruptions)

Method	Res.	Top-1 Acc.	mCE
ResNet-50 [31]	224	39.0%	76.7
SIN [23]	224	45.2%	69.3
Patch Gaussian [51]	299	52.3%	60.4
ResNeXt-101 WSL [55, 59]	224	-	45.7
EfficientNet-L2	224	62.6%	47.5
Noisy Student Training (L2)	224	76.5%	30.0
EfficientNet-L2	299	66.6%	42.5
Noisy Student Training (L2)	299	77.8%	28.3

Robustness

ImageNet-P (images with perturbations)

Method	Res.	Top-1 Acc.	mFR
ResNet-50 [31]	224	=	58.0
Low Pass Filter Pooling [99]	224	-	51.2
ResNeXt-101 WSL [55, 59]	224	-	27.8
EfficientNet-L2	224	80.4%	27.2
Noisy Student Training (L2)	224	85.2%	14.2
EfficientNet-L2	299	81.6%	23.7
Noisy Student Training (L2)	299	86.4%	12.2

plate rack medicine chest racing car

car wheel

- Importance of Noise in the student
- Student should not exactly copy the teacher

Model / Unlabeled Set Size	1.3M	130M
EfficientNet-B5	83.3%	84.0%
Noisy Student Training (B5)	83.9%	85.1%
student w/o Aug	83.6%	84.6%
student w/o Aug, SD, Dropout	83.2%	84.3%
teacher w. Aug, SD, Dropout	83.7%	84.4%

Ablations

• Importance of Iterative Training

Ablations

Larger teacher leads to better results

- Larger teacher leads to better results
- The more unlabeled data the best

- Larger teacher leads to better results
- The more unlabeled data the best
- Soft labels are preferred

- Larger teacher leads to better results
- The more unlabeled data the best
- Soft labels are preferred
- Larger student leads to better results

- Larger teacher leads to better results
- The more unlabeled data the best
- Soft labels are preferred
- Larger student leads to better results
- Balancing the data can be useful

- Larger teacher leads to better results
- The more unlabeled data the best
- Soft labels are preferred
- Larger student leads to better results
- Balancing the data can be useful
- Jointly training on labeled and unlabeled gives better results

- Larger teacher leads to better results
- The more unlabeled data the best
- Soft labels are preferred
- Larger student leads to better results
- Balancing the data can be useful
- Jointly training on labeled and unlabeled gives better results
- A large ratio between unlabeled and labeled is preferred

- Larger teacher leads to better results
- The more unlabeled data the best
- Soft labels are preferred
- Larger student leads to better results
- Balancing the data can be useful
- Jointly training on labeled and unlabeled gives better results
- A large ratio between unlabeled and labeled is preferred
- Training the student from scratch can be beneficial

5. Conclusion

- Significant improvement using unlabeled data
 - SOTA of ImageNet with 88.4%
- Applying Noisy Student improves performance also for smaller models or different architectures
- Significant increase in robustness over similar methods

Thank you!